ir al Examen
71
Libro para el maestro
35
II
MATEMÁTICAS
A MEDIR CONTORNOS
Para empezar
Son
binomios
expresiones algebraicas con dos términos como las siguientes:
x
+ 3
x
+
z
y
5
3
2
x
2
+ 7
Consideremos lo siguiente
En el siguiente rectángulo se han determinado las medidas de la base y la altura.
Largo =
2
x
Ancho =
x
+ 2
a) ¿Cuál es la expresión algebraica que representa el perímetro del rectángulo?
Comparen sus respuestas y comenten:
¿Cómo obtuvieron el perímetro del rectángulo?
Manos a la obra
I.
¿Cuáles de las siguientes expresiones permiten encontrar el perímetro del
rectángulo anterior? Subráyenlas.
x
+ 2 + 2
x
2
x
+ 2
x
+ (
x
+2) + (
x
+ 2)
2
x
+ (
x
+2) + 2
x
+(
x
+ 2)
(3
x
+ 2) + (3
x
+ 2)
SESIÓN 2
Recuerden que:
Dos términos son semejantes
cuando:
1) tienen la misma parte
literal, como
3
w
y
2
w
.
2) son términos numéricos,
como
-2
,
8
.
Propósito de la sesión.
Que los alumnos
resuelvan problemas que impliquen la suma de
binomios.
Organización del grupo.
En esta sesión se
propone que el alumno trabaje de manera
individual y en parejas, y que las discusiones
sean grupales.
Sugerencia didáctica.
Pregunte a los alumnos
en qué es distinto un monomio de un binomio y
pídales que escriban ejemplos en el pizarrón.
Respuestas.
a) Los alumnos pueden escribir distintas
expresiones correctas, como:
P
= 2
x
+ (
x
+ 2) + 2
x
+ (
x
+ 2
)
P
= 4
x
+ (
x
+ 2) + (
x
+ 2)
P
= 2
x
+
x
+ 2 + 2
x
+
x
+ 2
P
= 6
x
+ 4
P
= 6
x
+ 2 + 2
P
=
x
+
x
+
x
+
x
+
x
+
x
+ 2 + 2
Pida a los alumnos que escriban en el pizarrón
todas las expresiones distintas que hayan
encontrado y comenten cuáles son correctas, es
decir, cuáles son equivalentes.
Respuestas.
Con excepción de la primera, las
demás expresiones representan el perímetro del
rectángulo.
Haz click aquí para ir al índice de todas las materias con sus guías de respuestas y explicaciones

 

ir al Examen